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Today we will talk about...

@ Background errors from the EDA
© EDA humidity background error variances
© Diabatic balance operator

@ Stratospheric humidity analysis?
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Background errors from the EDA

The Ensemble of Data Assimilation (EDA) is input to update the
background error covariance matrix B every analysis cycle:

@ EDA has 25 members at ca. 18km resolution, half of the operational
4D-Var/forecast 9km resolution.
@ Standard deviations fully flow-dependent for all analysis variables.

@ Correlations partially flow-dependent with climatological length-scales
mixed in for low wavenumbers in particular (30% flow dependent up
to T63, growing to ca. 90% at T399).

@ Let’s have a look...
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Lengthscales B [km], zonal ave 100hPa—sfc
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Standard deviations B, zonal ave 100hPa—sfc
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Analysis increments absolute values, zonal ave 100hPa—sfc
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Lengthscales B [km], level 74

200hPa
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Standard deviations B, level 74 200hPa
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Lengthscales B [km], level 137 1000hPa
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Standard deviations B, level 137 1000hPa

VO x 1E5 ~1000hPa
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Humidity background error variances from the EDA

@ Pre-July 2017: Humidity background error variances were
climatological average for given background relative humidity value
and model level through a climatological statistically determined fit.

@ Now: Use relative humidity background errors o, from EDA like for
other variables.

@ Humidity sensitive data used better, in particular MW/IR where the
radiance signal is more accurately apportioned between humidity and
temperature.

@ In the tropics in particular, where absolute humidity is highest, this
leads to more accurate wind adjustments throught the 4D-Var tracing
effect.

@ Results show improved O-B fits for wind and humidity sensitive
observations and improved scores of wind in particular.
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Relative humidity variances: background- vs. EDA-based

@ Left: Old background-based RH stdev ( 750hPa, 2015092709)

@ Right: New EDA-based RH stdev, about two times larger.
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RH errors around TC's Jose and Irma 8 Sep 2017, 500hPa

@ Left: Old background-based RH stdev, “climatological average”.
o Right: New EDA-based RH stdev, captures extremes of the day.
@ Below: VIIRS image from NOAA's Suomi NPP satellite.
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Improving humidity B improves humidity: O-B for AMSR2

Instrument(s): AMSR2 All sky radiances

Area(s): N.Hemis S.Hemis Tropics

From 00Z 1-Jun-2016 to 12Z 21-Jun-2016
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Improving humidity B improves wind: O-B for SATOB

Instrument(s): SATOB-Uwind SATOB-Vwind  Area(s): Antarctic Arctic N.Midlat S.Midlat Tropics

From 00Z 1-Jun-2016 to 12Z 21-Jun-2016
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Diabatic balance through linear saturation adjustment

Use linear saturation adjustment (based on Asai 1965, HSIm et al. 2002
(operational ECMWEF), Hélm 2015 (current development)),

L qu(Tb)

6T =6T, + Cla—(6qyy — ——=—25T,
c,,( R, (T?)? )
Lqs(T?
dqy = dqvu — Cba(dqvu - le-rn)
R.(T?)
Lqs(T?
5qc - 5qcu + Cba(5un - L)z(s-r )
R.(T?)
In matrix from this becomes
6T 1- Lchay =Cha 0 0\ /4T,
dqy _ Cga’y 1-Cha 0 0 dqvu
dq —aChay aCba 1 0] | dqun
dqi —(1—-a)Clay (1—-a)CPa 0 1 0qiu
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Details of linear saturation adjustment

@ Increments 6 T, and dq,, assumed uniform over the gridcell.

@ Saturation adjustment takes place in the in-cloud portion C? of the
gridcell, with C? approximated by a regression formula as a function
of rh? and model level.

o g” = q5(T") in the in-cloud part of the gridcell.

@ Cloud condensate adjustment distributed by a(T?”) between §g; and
8q; with o T?) varying between 0 and 1 according to mixed-phase
formula.

@ The adjustment conserves total water.

@ The adjustment is unchanged for 6 T and &g, whether §g;, and dq; are
included or not.

1
1+ qus(Tb)

2
cpRy (Tb)

@ Here a =
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Where does this fit in? Start from the dynamic balance

The balance operator consists of the dynamic horizontal simplified and
linearized nonlinear balance (Fisher, 2003),

V2P, = (f +¢) % vy + 2V(vy - ), combined with vertical balance
operators (from statistical regression, Derber and Bouttier, 1999),

8¢ 1 0 0 8¢
0Nn =M 1 0 0Ny
O(Th,ps) N P 1) \o(Tu,Psu)

and simplified and linearized version of quasi-geostropic w-equation
. 2
balance (Fisher, 2003), (¢V2 + f2-25)w’ = —2V - Q,

0 9p?
5¢ 1 0 0\ /&
57’] = Qz 1 Ql 5T/n
oT 0 0 1 6T
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Total balance operator

The total balance operator consists of the dynamic nonlinear and vertical
balance, linear saturation adjustment and w- equation balance,

5¢ 1 0 0 8¢

oy | =1 M 1 0 0Ny

0Ty N P 1 0T,
oT Bee Brv  Bre 6Th
5qv = /th /va ﬁvc 5qvu
5CIc /Bct /Bcv /Bcc 5qcu

6C 1 0 O oC
57] = @ 1 & 57]n
6T 0 0 1 oT
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Apply saturation adjustment before w-equation

@ Apply saturation adjustment just before the w-equation in the balance
operator.

@ Then the final divergence dynamically supports the water vapour and
cloud condensate changes in an adaptive way without any special

treatment:

s 1 0 0 0 o
55 Q+M+QN(1— LCPa) 1+ QPA-LCha) Q- Lcta) akcha o 55
v
;sr = N1 — L cbay) P(1— Lchay) pécbay éCba 0 gru
5"” NCPay PCPay Cbay 1—cta o0 5‘”“
e _NCPa —PCbay —Chay cb 1 Feu

Yy ay ay a

with dgc = dq; + dqg; and 6T = (T, ps) and 6T, = (T, ps)u-
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Diabatic balance for single all-sky observation profile
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o Left: Current g — T balance operator.
@ Right: Diabatic balance operator before w-equation (no dqc).

@ Increments of temperature (red lines), humidity (blue lines) and wind
(arrows).
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Development of humidity-cloud analysis

@ Linearized saturation adjustment humidity-temperature applied before
the w-equation.

@ Add cloud liquid and ice to control variables. Treat just like humidity,
using EDA variances and diabatic balance (no zero variances, always a
minimum value).
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Stratospheric humidity analysis OFF — turn it ON?

@ There are long-standing issues with lower stratospheric model biases,
which get worse if humidity sensitive radiances are assimilated in that
region.

@ Humidity sensitive channels with peak sensitivity in upper troposphere
often have long tail of sensitivity in the stratosphere, up to 1hPa.

@ Bias-correction of these channels is mainly against the upper
tropospheric model column.

@ This leaves any inaccuracies to affect the humidity in the lower
stratosphere, where humidity values are much lower.

@ Systematic analysis corrections in upper troposphere lead to
systematic tendencies in the stratosphere.

@ Radiation interaction of water vapour in the lower stratosphere then
leads to degraded forecasts of temperature.

@ Until we have better control over lower stratospheric humidity
(through e. g. microwave limb sounders) we set the humidity
background errors to low values above the ‘humidity-minimum
tropopause’ to suppress humidity increments.
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Weighting function selected IASI humidity channels
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Stratospheric humidity analysis: ratio of g on/off

@ Left: Hovmoeller model level 60 (100hPa)

@ Right: Hovmoeller 15N-25N.

@ Humidity still evolving after 40 days (-30%, next slide), ongoing for
half a year from past experiments.
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Stratospheric humidity analysis: zonav day 10, 20, 40
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